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Summary

Tracking animal movements over time may fundamentally determine the success of disease control 

interventions. In commercial pig production growth stages determine animal transportation schedule, 

thus it generates time-varying contact networks showed to influence the dynamics of disease spread. 

In this study, we reconstructed pig networks of one Brazilian state from 2017 to 2018, comprising 

351,519 movements and 48 million transported pigs. The static networks view did not capture time-

respecting movement pathways. For this reason, we propose a time-dependent network approach. A 

susceptible-infected model was used to spread an epidemic over the pig network globally through the 

temporal between-farm networks, and locally by a stochastic model to account for within-farm 

dynamics. We propagated disease to calculate the cumulative contacts as a proxy of epidemic sizes 

and evaluate the impact of network-based disease control strategies in the absence of other 

intervention alternatives. The results show that targeting 1,000 farms ranked by degree would be 

sufficient and feasible to diminish disease spread considerably. Our modeling results indicated that 

independently from where initial infections were seeded (i.e., independent, commercial farms), the 

epidemic sizes and the number of farms needed to be targeted to effectively control disease spread 

were quite similar, indeed this finding can be explained by the presence of contact among all pig 

operation types The proposed strategy limited the transmission the total number of secondarily 

infected farms to 29, over two simulated years. The identified 1,000 farms would benefit from 

enhanced biosecurity plans and improved targeted surveillance. Overall, the modeling framework 

provides a parsimonious solution for targeted disease surveillance when temporal movement data is 

available.

KEYWORDS: swine movement data, dynamic contact networks, disease surveillance, SI 

models.

Introduction 

Between-farm animal movement has historically been associated with disease spread (Ortiz-Pelaez et 

al., 2006; Smith et al., 2013). Animal movement data has allowed for the initial development of 

network-based approaches, which are dominated by the use of static network, which are A
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representations of animal movements of many months as one snapshot, from which metrics are 

calculated and used to ranked farms providing targeted locations for surveillance and risk mitigation 

(Martínez-López et al., 2009; Bastard et al., 2020). Indeed, disease transmission events have proven 

not to restricted to the historical record of movement (Firestone et al., 2019; K. Schulz et al., 2019; Qi 

et al., 2019; Sterchi et al., 2019), therefore, it is recognized that the current neglected temporality of 

real-world animal movements has been a constant roadblock to the advancement of network 

epidemiology, especially in the development of new methodologies (Pellis et al., 2015; Chaters et al., 

2019), and the design of applied surveillance and control measures. Ultimately, the use of network-

based metrics to select farms for isolation or surveillance schemes has shown great value (Mohr et al., 

2018; Firestone et al., 2019; Payen et al., 2019). This is a direct consequence of the availability of 

animal movement data (Büttner et al., 2016; Firestone et al., 2019).

Stochastic simulations have been used extensively to measure the impact of disease control strategies 

in future disease spread scenarios (Smith et al., 2017; Funk et al., 2018; Kim et al., 2019; Lanzas et 

al., 2020). Mathematical models have also been used to experimentally spread disease over contact 

networks and reveal important dynamic characteristics of epidemics (Miller, 2017; P. Kim and Lee, 

2018; Darbon et al., 2019). For example, mathematical models have been used to describe the 

epidemic spreading in temporal contact networks, which provides an opportunity for tracing 

outbreaks and contact among nodes over time (Guinat et al., 2016; Colman et al., 2019; Ferdousi et 

al., 2019; Sterchi et al., 2019). Some examples of software readily available to model epidemic on 

networks include EMULSION (Picault et al., 2019) GEMFsim (Sahneh et al., 2017) EpiModel 

(Jenness et al., 2018), and SimInf (Widgren et al., 2019), computationally and algorithm used are 

diverse, which make some more efficient or flexible than other. We chose to use SimInf, mainly 

because it was design to accommodate large networks, thus feasible to be use over national or sub-

national networks. Indeed, has been successfully used to select sentinel nodes in cattle networks 

(Chaters et al., 2019; Engblom et al., 2020).

Here, we used two years of pig movement data from one Brazilian state to estimate the optimal 

number of farms for target surveillance by tracking between-farm contact pathways and inferring A
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epidemic sizes throughout disease propagation. We first described the complete pig movements and 

then challenged the use of static networks against dynamic networks. We proposed a stochastic 

compartmental model to simulate disease spread in a two-year empirical network while accounting 

for the daily order of the movements. Our model formulation allowed the calculation of the minimum 

number of farms needed to be targeted and undergo for example, lockdown or stamping out, in a 

scenarios when foreign animal diseases (FAD) are detected in the territory. Finally, we applied the 

proposed model, ultimately to identify the farms that during peacetime would constitute a list of farms 

to where active surveillance activities should be prioritized (i.e., sampling, periodic visits), which 

were then mapped and described in regard to their biosecurity and infrastructure.

Material and methods

Data collection and entry

The record of pig shipments among all registered farms from the state of Rio Grande do Sul which 

holds 14,6% of the total swine population in the county (third largest pork-producing state in Brazil), 

was used to reconstruct contact networks from 2017 until 2018 (SEAPI-RS, 2018). Information about 

each swine farm included farm identification, production types (breeding, certified-swine-breeder, 

sow, nursery, wean-to-finisher, finisher, subsistence and others), farms infrastructure (e.g., presence 

of a fence, presence of a cleaning and disinfection station, see table 2 for the full list), geolocation and 

farms population capacity. Each pig shipment included date(s), farm of origin and destination, number 

of animals transported and purpose of movement (weaning, finishing, slaughter or other). Movement 

data with missing information of farm location, production type, farm of origin or destination were 

excluded prior to the analysis. Additionally, farms declared inactive (no pigs raised in the past two 

years or out of business) were not considered in the analysis. Movements from or to other states were 

also excluded from any analysis. Based in information reported to the local authorities in June 2018 

all farms were classified as i) “commercial” farm with active contracts with integrated swine 

companies, ii) “independent” farm that declared to be commercial but did not have active contract 

with integrated swine companies and small farm holders and iii) “not reported” farms that did not 

report to local authorities their pig operation type (e.g., commercial or independent). The 

identification of 1,911 (21.4%) not reported farms, resulted in regional policy in which the state A
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authorities issued a request to all farms report pig operation status, within one year, farms that do not 

report will have all pig movements blocked until information is shared. Finally, farms with missing 

geographic location were discarded. 

Networks analysis: static and time-series networks

To analyze the stability of between-farm contacts over time, we reconstructed a directed static 

network. To apply a static network analysis, repeated between-farm contacts between two farms 

throughout the observation period, from January 2017 to December 2018, were aggregated to a single 

one. Here directed “edges” represented by pig shipments between two “nodes”, where nodes 

corresponded to pig farms. Second, a temporal explicit directed network was constructed. To assess 

the temporal features of the  network, static centrality metrics were calculated on monthly, six-months 

and yearly sub-networks (Lentz et al., 2016). For the static and the time-series networks, we 

calculated several centrality indicators for farms within the network: outdegree, indegree, page rank, 

closeness centrality, betweenness, giant weakly connected component (GWCC), and giant strongly 

connected component (GSCC) (Table 1) (Cárdenas et al., 2018) .As slaughterhouses constitute sinks 

and we were interested in potential disease spread among living animals, transports to slaughter were 

excluded from the network analysis, but are kept for descriptive purposes (see Figure 2 and 

supplement Table S1).

The variability of the network structure over time-series network aggregations

Static networks are considered an approximation of all movement paths for a defined period, e.g., 

animal movement between pig farms for one month (Büttner et al., 2013; Lentz et al., 2016). This can 

artificially create accessibility paths between nodes that are not always accessible by all “nodes” in a 

network, which can lead to an overestimation of the connectivity among the nodes (Holme and 

Saramäki, 2012; Lentz et al., 2016). To quantify the amounts of such static error, the number of paths 

in the static view can be compared with the number of paths in the time-series network (Lentz et al., 

2013, 2016). A causal fidelity of one means that the temporal network is well represented by its static 

network, while networks with lower causal fidelity values would not represent the temporal paths well 

because most of the paths are not causal. Here, we calculated the causal fidelity on timescales that are A
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typically used to investigate animal movement data: monthly, 6 months and 1 year and for the full two 

years of data that were used to reconstruct directed networks (Lentz et al., 2016). We also calculated 

the edge loyalty ( , which measures the fraction of preserved edges (  of a given premise between 𝜃) 𝜃)

two consecutive years,  and . To quantify , we define as the set of edges from the 𝑡 ― 1  𝑡  𝜃𝑡 ― 1, 𝑡
𝑖 𝑌𝑡 ― 1

𝑖

premise  in the time  and  as the set of edges from the premise  at time . Then, is 𝑖 𝑡 ― 1  𝑌𝑡
𝑖 𝑖 𝑡 𝜃𝑡 ― 1, 𝑡

𝑖

given by the Jaccard Index in equation 2 (Valdano et al., 2015; Schulz et al., 2017).

𝜃𝑡 ― 1, 𝑡
𝑖 =  

|𝑌𝑡 ― 1
𝑖 ⋂ 𝑌𝑡

𝑖|

|𝑌𝑡 ― 1
𝑖 ⋃ 𝑌𝑡

𝑖|
(2)

For the node loyalty ( ), we use the same Jaccard Index,𝜑

𝜑  𝑡 ― 1, 𝑡
𝑖 =  

|𝑉𝑡 ― 1⋂ 𝑉𝑡|
|𝑉𝑡 ― 1⋃ 𝑉𝑡|

(3)

where is the set of farms that are active in period , and  is the set of farms that moved at 𝑉𝑡 ― 1
𝑖 𝑡 ― 1  𝑉𝑡

𝑖

least one animal at time  (Valdano et al., 2015; J. Schulz et al., 2017).𝑡

The minimum number of farms needed for effective control disease spreading process over 

time-varying network 

We developed a stochastic susceptible-infectious (SI) epidemic model to calculate the minimum 

number of farms needed to effectively reduce the number of new cases expected to spread through the 

contact network. The number of infections after the removal of farms ranked by network metrics 

betweenness, closeness, page rank and degree, random removals (similar to the current state of farm 

surveillance), and without farm removal were the main model outputs. In this work removal means 

effective target surveillance activities, which can include yearly visits for testing of viral circulation, 

for example. Ultimately, this is expected to approximate the impact of network-based target 

surveillance, which often include farm visits, sample collection, etc., to a feasible number of farms. 

The epidemiological model structure and dynamics

A network based stochastic compartmental model with two compartments, susceptible  and  (𝑆)  

infectious  representing different discrete health states, was used to model the within-farm (𝐼)A
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transmission dynamics of a simulated disease assumed to spread only via pig movement. Transitions 

from 𝑆 to 𝐼 was a one-way transition depending on  with 𝛽 as the transmission coefficient. 𝑆
𝛽

𝐼

Infected animals were assumed to be infectious until the end of simulations and were allocated in each 

farm modeled as metapopulations. We assumed homogenous mixing population within the farms, 

where all animals have identical transmission coefficients. For simplicity we have not considered the 

heterogeneities related to age, space or behavioral aspects of the populations.  The model simulated 

disease spread at two levels (local and global), with the local level under the regular stochastic 

compartment model and formulated as a continuous-time Markov chain (CTMC). The Gillespie 

stochastic simulation algorithm (SSA) was applied to simulate the number of animals within each 

compartment through time using a transition rate from  as𝑆
𝛽

𝐼

𝑑𝐼
𝑑𝑡 =

𝛽𝑆𝑖𝐼𝑖

𝑆𝑖 + 𝐼𝑖

(1)

in a specific time  (Gillespie, 1977; Widgren et al., 2019). For the between-farm transmission 𝑡

(global-level) was realized over a directed temporal network on the daily movements between farms 

(origin, destination and number of animals) from January 1st 2017 to December 31st 2018. The 

number of incoming and outgoing animals was used to update the number of animals in a given node 

 at time . The movements with destination to slaughterhouses were model as an “exit event”, thus 𝑖 𝑡

removed from the simulation systems. To assure the stability of the metapopulations the number of 

born alive declared to the local veterinary were used as the only “enter event” and only occurred in 

breeding farms and assumed to be susceptible. For model initialization we assume an initial herd 

prevalence of 10% and 0.1% of infected pigs in each farm, in which disease was allowed to be 

transmitted between and within farms. We use a set of 𝛽 values of 0.01, 0.05, 0.1 and 0.2, as used for 

sensitivity analysis (supplementary Figure S3).

Model initialization followed two seed initial infected scenarios:  scenario 1: from the 9,500 farms 

with least one movement from 2017 to 2018, 950 were selected randomly to serve as seed infection 

(where the disease was determinate to start spreading from). Scenario 2: from the 9,500 farms with 

least one movement from 2017 to 2018, 950 farms were sampled to serve as seed chosen 

proportionally to the number of farms in each production category, 40.4% commercial, 38.2% A
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independent, and 21.4% from the farm that did not report this information. This allowed the initial 

infection to be seeded within all types of pig operations. The comparison of both disease introduction 

approaches allowed us to test a more realistic scenario since disease can emerge at any location of the 

study area and in any pig operation (Figure 1). The simulated control intervention was based only on 

the sequential removal of farms from the time “0” based on the static network metrics described 

above. While farms were removed, the number of new cases per 100 susceptible farms was 

calculated. We chose an arbitrary number of 2,000 herds to be removed, and at the end of each 

simulation scenario the incidence of new cases  was calculated as follows:𝐼

𝐼 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑤 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 ℎ𝑒𝑟𝑑𝑠 𝑖𝑛 2017 ― 2018

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑒𝑟𝑑𝑠 𝑡ℎ𝑎𝑡 𝑡𝑟𝑎𝑑𝑒𝑑 𝑤𝑖𝑡ℎ 𝑜𝑡ℎ𝑒𝑟 ℎ𝑒𝑟𝑑𝑠 𝑖𝑛 2017 ― 2018)
― (𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 ℎ𝑒𝑟𝑑𝑠 𝑖𝑛 2017 ― 2018 𝑡ℎ𝑎𝑡 𝑡𝑟𝑎𝑑𝑒𝑑 𝑤𝑖𝑡ℎ 𝑜𝑡ℎ𝑒𝑟 ℎ𝑒𝑟𝑑𝑠 )

Infection was seeded into all candidate farms randomly for 100 times, from which simulations were 

run and the median incidence was derived for each run  The simulations were implemented in R 

package SimInf (Widgren et al., 2019). 

To evaluate the predictability of our modeling approach, we reproduced the models described above 

over the 2019 temporal network. Briefly, we removed from 2019 network the 2000 farms identified in 

the model of 2018 network based on the most efficient network parameters, and ran the same model 

structure on the 2019 network, assuming that surveillance was done in all farms we calculated the 

remain expected number of infections in for 2019. In addition, based on the best network metric that 

reduced the incidence the most (model above), we ranked the farms to be priority in each year, 2017-

2018 against 2019 to evaluate changes on ranking priority over time (Supplementary figure S4).

Cumulative contacts as a proxy of epidemic sizes

The modeling setup described by (Payen et al., 2019) was adapted to identify the network-based 

metric that can produce the smallest epidemic size distribution at the end of the two years of pig 

movements, and consequently allow the generation of a farm hot-list to use to target surveillance 

activities. This approach is based on the classic deterministic SI spreading model that follows 

movements temporality (Dubé et al., 2008; Nöremark et al., 2011; Konschake et al., 2013). A
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Thereafter, we will refer to this model as “spread cascade”, which is a temporal representation of the 

cumulative and consecutive contacts among farms, and therefore can be interpreted as the size of an 

epidemic (Payen et al., 2019). The hypothetical disease spread followed the chronological order of 

movements over the two years. In short, when there was a directed interaction, including the three 

dimensions of time t, infected farm i and susceptible farms j, disease has successfully been 

transmitted. These events were counted in favor of each farm i cascade and the triplet t, i, j and added 

to the temporal links of the stream; see (Payen et al., 2019) for more details of the methodology. 

Overall, we recorded the daily spread cascades for the two years of data, which are represented by 

weekly averages and  ± 95% CI (see supplementary figure S4), and the accumulated spread cascades 

sizes for each seed node (9,500 farms) in the network at the end of the two years as a proxy for the 

worst-case scenario in epidemic propagation (Payen et al., 2019). We used the static network to 

initially rank all pig farms in descending order of degree, betweenness, page rank, and closeness and 

then removed the top 10, 250, 500, 750 and 1,000 farms before starting the model simulation while 

recording the spread cascade sizes. Since this study was designed to guide decisions in the field, we 

consulted with the local stakeholders before deciding on the final number of farms to be on the 

surveillance hot-list, which initially would be up to 1,000 farms (personal communications with Dr. 

Lopes, Chair of the Animal Movement and Surveillance Department of the state of Rio Grande do 

Sul). For comparison with usual surveillance practices, we selected the same number of farms 

randomly. The contribution on containing the epidemic spread by each network-based target 

surveillance strategy was evaluated by comparison of the final spread cascade distributions at 

December 2018 using a nonparametric Kruskal-Wallis test followed by Dunn's post hoc test, where 

the p-values below 5% were significant. Once the most efficient network-based surveillance strategy 

was defined, the biosecurity, infrastructure and population of the selected sentinel farms were 

described. The biosecurity and infrastructure is provided by field veterinarians or by pig producers 

directly to the local veterinary service.

Software

The software used for statistical analysis and graphics was R statistical software (versions 3.4.1, 

5.1.3) (R Core Team) with R Studio editor using the igraph 1.2.4 (Csardi and Nepusz, 2006), 

tidyverse 1.2.1(Wickham, 2017), SimInf 6.3.0 (Widgren et al., 2019), sf 0.5-3 (Pebesma, 2018), and A
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brazilmaps 0.1.0 (Siqueira, 2019) packages. Spyder 3.3.3 software for Python version 3.7 and Adobe 

Illustrator CC 2018 software were also used.

Results

Description of pig movements 

The total number of active pig farms in the complete database included 11,849 farms, from which 

9,500 had registered geographic coordinates and were considered in this analysis. The majority, 

40.4%, were identified as commercial farms, 38.2% of independent pig producers, and 21.4% did not 

report pig operation type (Table S3 shows the description of the population for both pig operation 

classes). In the commercial farms there were 17 pig production systems, the number of farms within 

each system were from 10 to 465 farms. While we have described movements into the 102 registered 

slaughterhouses, they were not accounted for in any network analysis thereafter (Figure 2). Shipments 

from commercial to slaughterhouse totaled about 34% of the total movements, while 18% of the 

movements were from independent farms into slaughterhouses and 14% were between commercial 

farms. Importantly movements from independent pig producers and from farms that did not report pig 

operation types into commercial farms were, 3.35% and 1.97%, respectively. Among all farms with 

information about their production types  6,555 (55.32%) finisher farms, 1,816 (15.33%) nurseries, 

470 (3.97%) wean-to-finisher farms, 433 (3.65%) breeding farms, 122 (1.03%) certified swine 

breeder farm and 250 (2.11%) other farms, which included insemination stations and isolation units, 

2,101 (17.73%) as small pig holders (backyard farms or for subsistence).

Figure 1. 

More than 51% of movements were from finisher farms to slaughterhouses, with a monthly median of 

7,657 shipments. The second largest number of movements from nurseries to finisher farms was 

13.51%, with a monthly median of 1,992 transfers. Breeding farms made up for 4.65% of the 

movements to nursery farms and 4.3% of movements to the finisher, with 673 monthly median 
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movements. Finally, wean-to-finisher farms sent a small but significant amount of pigs to slaughter 

(3.5%), while certified swine breeder farms accounted for 2.8% of movements to slaughter (Figure 2).

Figure 2. 

Monthly network analysis

From the two years of movement data, we reconstructed the monthly static networks. The number of 

farms, movements and animals varied substantially with a steady increase from July 2017 until 

October of the same year (Figure 3). The network diameter revealed a positive increasing trend of 

33% from April 2018 through December 2018, December 2018, which decreased thereafter; this 

pattern was different from the monthly values from the previous year. The increase in the network 

diameter in 2018 increase the shortest paths between pairs of farms, thus likely to reduce the size of 

epidemics, because two GSCC would be less likely to be directed connected. The monthly analysis 

showed a positive trend of the GSCC in 2017 and a negative trend in 2018, and the GWCC had a 

more stable pattern with two consecutive peaks in July and October of 2018. In May 2017 GSCC 

peaked at 40 farms inflated with mostly commercial farms, and in November 2018 the GWCC had 

almost 600 farms in which most were also commercial (supplementary Figure S1 and Table S2 for the 

two years GSCC and GWCC).

Figure 3. 

Loyalty and causal fidelity 

The node loyalty of 2018 compared with 2017 was 0.65, while edge loyalty was 0.19. This means that 

only 65% of the farms that traded pigs in 2017 were preserved in 2018, and 19% of the edges were 

preserved between 2017 and 2018. In more details, for the six months loyalty the second half of 2018 

was the highest at 75% and edge loyalty also increased to 19%, if compared with the lowest edge 

loyalty of the second half of 2017 at 17% and lower node loyalty for the first six month of 2017 at 

68%. On the other hand, the monthly causal fidelity varied from 0.33 in July 2018 and reached the 

highest value of 0.55 in July 2017 (supplementary Figure S2). For the network that evaluated time A
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periods of six months, the causal fidelity was 0.22 for the first half of 2017 and 0.47 for the second 

half of 2018, and the annual evaluation was in 2017, 0.18 in 2018, and 0.33 for the entire static 

network. The causal fidelity demonstrated a discrepancy between static and temporal network views. 

In addition, we calculated the causal error from the causal fidelity, which can be approximated by the 

inverse of “c” and represents the overall overestimation of disease outbreaks if static networks are 

used. The first six months of 2017 had the worst results, with overestimations at 4.54 and 1.81 for the 

July 2018 network.

Number of sentinel farms for targeted surveillance and epidemic sizes

The stochastic runs showed that the removal of 2,000 farms did not completely control the disease 

from spreading, but it was reduced markedly to a maximum of 1.88 new cases per 100 farms when  𝛽

of 0.2 was used. Based on local capacities of the official veterinary service and that the average 

number of new cases was reduced to as low as 7.70 cases per 100 farms with a  of 0.2 when 1,000 𝛽

farms were removed from the network, the former was set to be the maximum number of feasible 

farms to be targeted. In addition, to evaluate the impact of the deployment of the surveillance 

activates to the farms identified with the past network data (2018) on the number of infected farms for 

the following year (2019), assuming that all 2,000 farms were surveyed the number of new cases was 

1.20 per 100 farms and if the 1,000 were targeted the maximum incidence would be reduced to 5.89 

cases per 100 farms. Furthermore, we compared two infectious seed scenarios: a) infections started at 

random farms and b) stratified random infections forced to start in proportion to the number of 

commercial, independent, and not reported. Both have very similar results which reinforced the 

importance of independent farms in the role of spreading diseases into commercial pig farms and vice 

versa (Figure 4, supplementary Figure S3)

Figure 4.

After the removal of the first 1,000 farms with the highest degree which was the identified as the most 

effective in reducing the spread of the simulated disease, our model estimated that the maximum 

outbreak size would involve 29 farms secondarily infected (Figure 5). When compared with the A
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removal of random nodes, which is a common practice where farms that are more convenient are 

visited, our model exercise estimated that the number of secondary infected farms could reach up to 

2,593 farms (Figure 5, supplementary Table S4 and Figure S6). In addition, we compared the list of 

farms with the highest degree the 2018 with the 2019 network, we found that 68% of the top 1.000 in 

the 2018 network were the same in 2019, only a small portion of nodes 120 (9%) were different from 

the ones identified in 2018 see supplementary figure S4.

Figure 5. 

Descriptive analysis of biosecurity, infrastructure and population profile of the targeted sentinel 

farms.

Most of the farms within the 1,000 target farms were commercial (55.6%) (Supplementary 

information Figure S7), with one production system contribution with 138 farms, and 29.7% were 

independent and 14.7% did not report business operation. From the comprehensive list of biosecurity 

and infrastructure characteristics of the commercial farms had a median of 2 barns (IQR-1-11), 

capacities for housing were approximately 1,100 pigs (IQR=162-9,925), the median number of piglets 

was 1,122 (IQR-16-7,229), breeding farms had 4 (IQR=1-18) boars, and the gilts population was 544 

(IQR-11-3,044). More details about the farms’ biosecurity and infrastructures can be found in Table 

2.

Discussion

The use of static networks to identify farms for target activities, such as enhancing surveillance, 

should be utilized with caution due to several limitations associated with animal movement 

aggregation, as showed here and elsewhere (Lentz et al., 2016). An obvious issue here is to assume 

that the same pair of farms would trade with each other throughout the entire study periods. 

Therefore, we argue that at least one approach testing network stability, such as causal fidelity, should 

be presented before considering the use of the static networks in the development of disease A
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surveillance or control strategies (Lentz et al., 2016; Payen et al., 2019). Our results suggested that the 

use of centrality metrics derivate from static networks would bias the selection of sentinel farms due 

to unstable networks, which also reflected in the overestimated number of expected outbreaks. Our 

modelling framework accounting for between-farm temporal contacts allowed to investigate disease 

spreading dynamics, calculate the number of farms needed to reduce expected epidemic sizes and to 

map sentinel farms. Comparing the two strategies to seed initial infected nodes, randomly and 

infection started from independent, commercial and farms lacking operation type, we find that the 

epidemic sizes and number of farms needed to be targeted to effectively control disease spread, were 

quite similar. This finding is more likely explained by the presence of contacts among all pig 

operation types (Table S1). Therefore, diseases are expected to spread from commercial to 

independent farms and vice versa. This clearly demonstrates the significance of identifying and 

further characterize the biosecurity infrastructure and practices of sentinel farms. Ultimately the 

identification of key biosecurity vulnerabilities can increase the local and national capacity to reduce 

the spread of endemic disease. 

We found that static network was not represent the chronology fi the movements, thus did not provide 

a fair representation of the overall time-respecting movement pathways. A number of studies have 

considered static network views to make inferences about disease spread or to calculate outbreak sizes 

(Büttner et al., 2013; Salines et al., 2017) Mostly those studies did not fully considered the causal 

fidelity of the contacts, which is a recommended approach that can quantify the error of the static 

representation of a temporal network (Lentz et al., 2013). Thus, without such verification, it is 

difficult to decide if and at which time window inferences or metrics from static networks can be 

interpreted or used to summarize networks (Lentz et al., 2013; Büttner et al., 2016). It is risky to 

assume that aggregating contact movements into one snapshot would not overestimate or introduce 

edge biases (Vidondo and Voelkl, 2018). We found that the number of active pig farms was seasonal 

and skewed with variation of plus or minus 300 farms over the two-year period, a similar trend was 

observed in the volume of pigs traded. In our study, while the GWCC increased over the years, the 

GSCC suffered from relevant variations throughout the months, especially in the second half of 2018, 

where new paths connected the GSCC with other minor components and consequently increased the A
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size of the GWCC, which could have implications for disease transmission and persistence 

(Marquetoux et al., 2016; J. Schulz et al., 2017). The sizes of GSCC and GWCC variation were 

mostly attributed to variation in the number of commercial farms activities. The size of GSCC and 

GWCC of the independent farms followed the same trends of the commercial farms for several 

months, therefore it pivotal that this farms are also considered in the proposed target surveillance 

strategies. Farms that did not report operation types represented the minority of the farms in both 

components, especially in April 2018 (supplementary Figure S1). In general, the use of static 

networks tends to artificially connect a larger number of farms, which could consequently bias 

surveillance strategies to less relevant farms and or compromise resource allocation.

Our results show that different network-based intervention schemes successfully reduced the spread 

of disease independently from the local  coefficient probability rates at the farm-level. We show that 𝛽

targeting farms by degree was the most effective intervention in reducing the number of new cases, 

followed by targeting farms by betweenness, which required ~ 1,300 farms to be targeted. As 

anticipated, random removal had little impact in controlling disease. Studies explored the contribution 

of existing trade duration on disease transmission probabilities and the impact on epidemic sizes, 

suggesting that epidemic sizes were sensitive to network activity (Farine and Whitehead, 2015; Lebl 

et al., 2016). Indeed, we explicitly considered node activity while disease spread was simulated. Other 

studies attempted to account for time-dependent disease spread while aiming to reduce . One study 𝑅0

used a non-compartmental model approach and found that the number of farms that needed to be 

removed by degree approached 50% of all farms (Kinsley et al., 2019). The second study used a 

mechanistic approach in which African swine fever (ASF) spread was simulated and found that 

degree ranking was the best strategy to contain the disease (Ferdousi et al., 2019). In summary, for 

most swine contact network studies, degree was shown to be the best strategy to select sentinel farms 

(identify target farms), while betweenness had the second-best performance. It is worth noting that 

betweenness is a useful metric when studying disease diffusion (Farine and Whitehead, 2015), mainly 

because it is a representation of the shortest path between nodes. Here independent farms with high 

betweenness may bridge several commercial farms; therefore, more details about these unexplored 

pathways should be investigated in the future. One limitation of our study is the fact that 21.4 % of A
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the farms did provided information about type of pig operation, thus this group of farms could be 

formed by commercial or independent farms, and thus the real number of contacts among independent 

and commercial farms may not be precise. However, we provide a description of those farms in which 

we found that the median number of pigs was 415 (IQR 1-1441); median number of breeding female 

of 72 (IQR 1- 483), and median of 1 boar (IQR 0-4) (supplementary Table S3). By comparison with 

the local size of the commercial pig operations, these farms may be considered to be smaller operation 

which could include farms with limited biosecurity, thus, a follow-up study is needed to collect more 

information about these farms.

Based on the identified minimum 1,000 farms needed to be removed from the contact network, we 

simulated outbreak propagation with a deterministic SI model and identified the most efficient 

network-based metric capable of reducing the expected size of spread cascades. We showed that 

degree was the most significant intervention, with no more than 29 secondarily infected pig farms 

involved per outbreak (supplementary information Figure S7). In addition, our results demonstrated 

that targeting more than 500 farms by degree was efficient in reducing epidemic sizes. Random 

surveillance was unexpectedly better than closeness and page rank for most of the two years of 

propagation. One possible explanation may be that this network is not well connected, and farms that 

remain to be removed may be too similar with respect to their closeness and page rank values; 

therefore, the impact on the propagation is expected to be the one resulting from random removals. 

When we compared the list of targeted farms identified with in 2018 with the ones with the highest 

degree in 2019, the majority were the same farms. Thus the use of retrospective network to inform 

future surveillance activities is a reasonable approach. Indeed, to show the direct impact in the 

incidence of 2019, we ran the transmission model without the farms identified in 2018, ultimately the 

incidence at the end of the year was estimated to at 1.20 cases per 100 farms. 

Our results showed that among the first 1,000 farms with the highest degree, more than half were 

commercial farms (55.6%) and 29.7% were independent pig farms. This illustrates the interplay 

between the two populations, where infection can arrive at either and propagate in both production 

sectors. Here, most farms of interest lacked important biosecurity features, such as cleaning and A
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disinfection stations (Dee et al., 2006). A study in Argentina also highlighted the lack of biosecurity 

on highly connected farms (Alarcón et al., 2019). On the other hand, in our study, most farms did not 

utilize rendering, but preferred to compost dead animals. The former was previously described as an 

important risk factor for the spread of porcine reproductive and respiratory syndrome (PRRS) in the 

US (Velasova et al., 2012; Silva et al., 2019). In the same study, composting was found to be the less 

risky practice when removing cull or dead pigs (Silva et al., 2019). Another relevant biosecurity point 

that has been described as a risk for disease introduction is the number of farm entries; here, we 

noticed that the majority of the farms had only one main road, which potentially represents less risk 

for local disease transmission (Silva et al., 2019). A disproportionate number of these highly risky 

farms were nurseries (32.23%) and breeding farms (20.2%), which has often been proposed as a 

desired group to be targeted for surveillance (Dorjee et al., 2013).  In addition to the identification of 

priority sentinel farms, the identification of relevant biosecurity gaps is invaluable, especially under 

the current risk of more global spread of foreign animal diseases such as ASF (Brown and Bevins, 

2018; Jurado et al., 2018). One option would be the implementation of enhanced biosecurity plans, 

such as what has been proposed by the Secure Pork Supply (SPS) Plan in the US. The SPS plan was 

designed to provide business continuity in the event of a foreign animal disease outbreak as well as 

help protect operations from endemic diseases (Pudenz et al., 2019). In summary, to participate in the 

SPS Plan for Continuity of Business, each farm must: 1) Request a National Premises Identification 

Number (PremID) which include collecting the geolocation of the farm; 2) Prepare a biosecurity plan; 

3) Create a premises map; 4) Write an enhanced site-specific biosecurity plan; 5) Monitor for 

symptoms of foreign animal diseases (FADs) including ASF; and 6) keep movement records of 

animals, people, equipment, and other items, therefore similar approach could be proposed to be 

initially implemented in the identified 1,000 sentinel farms.

In this study, we did not examine feed-truck or other vehicle movements or sharing. Such information 

is absent from the majority of the current literature (Lentz et al., 2016), but it has been included in 

some studies (Augusta et al., 2019; Sterchi et al., 2019). A more recent study suggested that sharing 

haulage vehicles has significant potential for spreading infectious diseases within the pig sector. The 

cleansing and disinfection process of haulage vehicles is therefore a critical control point for disease A
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transmission risk mitigation (Porphyre et al., 2020).  It is critical to acknowledge that the movement 

of feed trucks and short-distance transportation of breeding replacement animals or culled sows 

contributed to disease transmission (Silva et al., 2019). Indeed, before these additional contacts are 

not taken into consideration, our understanding of disease spread pathways will likely continue to be 

limited.

Finally, the modeling framework proposed here can be broadly used to calculate the minimum 

number of farms to be targeted for the control of disease spread when temporal contact data are 

available and to determine the network metrics that should be preferred for selection of target farms 

according to the approximation of epidemic sizes. In addition, the proposed framework could be used 

as a decision tool for both local official veterinary services and the private sector for evaluating 

animal movements and developing a more risk-oriented surveillance strategies. At production system 

level, it allows for the creation of a hot-list with farms to which the reinforcement of biosecurity 

would be key in the face of an outbreak. Future studies are also needed to explore the contribution of 

movements to slaughterhouses, especially when pig are redirected to other slaughterhouses (i.e., 

slaughter not able to slaughter all animals) or send back to the farm of origin, this is very common in 

the US (Russell et al., 2020). Another limitation was the number of farms missing geographic 

locations, since this analysis will be re-run be the local veterinary services yearly, once this farm 

location become available the results will be updated. In addition, a clear next step would be the 

modeling of the introduction and control strategies of a foreign animal disease, which combines 

between farm epidemiological dynamics to map the epidemic potential considering control strategies. 

Conclusion

One-third of all pig farms traded with the same partners in the course of two years; consequently, the 

static networks did not offer reasonable information about the temporal movement pathways. Our 

proposed modeling framework provides a parsimonious solution; it handles the temporal order of 

movements, calculates the minimum number of farms needed to be targeted and approximates the 

expected epidemic size in a worst-case scenario where each movement can effectively transmit 

disease. The results from the application of this approach identified target farms for risk-based A
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surveillance and disease mitigation efforts, with remarkably limited biosecurity. This finding imposes 

important vulnerability to pathogen introduction and spread; therefore, those farms could benefit from 

the implementation of enhanced biosecurity plans, such as what has been promoted and implemented 

in the US by Secure Pork Supply plan (https://www.securepork.org/). Finally, the introduction of risk-

based approaches may optimize the costs of routine surveillance and during initial stages of a disease 

emergency; the lockdown or stamping of these farms could potentially reduce the final epidemic size.
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Table 1. Description of network terminology and definition applied to pig movements.

Parameter Definition References

Nodes A pig farms. (Wasserma

n and Faust, 

1994)

Edge A link between two nodes. Wasserman 

and Faust 

(1994)

Degree (k) The number of unique contacts to and from a farm. When 

direction was taken into account, the ingoing and 

outgoing contacts were separated: the “out” degree is the 

number of contacts originating from a specific farm, and 

the “in” degree is the number of contacts directed toward 

a specific premise.

(Wasserma

n and Faust, 

1994)

Page rank Google PageRank measure, a link analysis algorithm that 

produces a ranking of importance for all nodes in a 

network with a range of values between zero and one. The 

PageRank calculation takes into account the degree of a 

given premises and the degree of its neighbors. 

(Brin and 

Page, 1998)

Closeness 

centrality

Closeness centrality measures how many steps are 

required to access every other vertex from a given node. 

This measure can be directed as incoming steps or 

outgoing steps.

(Freeman, 

1978)

Betweenness The frequency at which a node is located on the shortest (Freeman, 
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path between any two pairs of nodes in the network. 1978)

Giant weakly 

connected 

component 

(GWCC)

The proportion of nodes that are connected in the largest 

component when directionality of movement is ignored.

Wasserman 

and Faust 

(1994)

Giant strongly 

connected 

component 

(GSCC)

The proportion of nodes that are connected in the largest 

component when directionality of movement is 

considered.

(Wasserma

n and Faust, 

1994)
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Table 2. Description of biosecurity and infrastructure of the targeted farms.

Variable Overall proportion

Presence of isolation barn(s) No=77.6%

Yes=22.4%

Fence around the farm No=54.7%

Yes=45.3%

Cleaning and disinfection station(s) No=72.7%

Yes=27.3%

Vegetation barrier around the farm No=86.7%

Yes=13.3%

Single entry point No=72.4%

Yes=27.6%

Bird nets No=59.6%

Yes=40.4%

Pig loading and unloading outside the farm’s designated clean area No=61.3%

Yes=38.7%

Special clothing dedicated for farm use (shower in) No=77.7%

Yes=22.3%

Feed bins inside the designated clean area while loading is external No=60.3%

Yes=39.7%

Vulnerability score *

Low

Medium

High

Not informed

0.21%

47.4%

17.8%

34.8%

Veterinary care

From commercial system

Independent veterinary

63.5%

4.5%A
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Absent

Not informed

1.1%

30.9%

Farm type

Nursery

Breeding farm

Finisher farm

Certified swine breeder farm

Wean-to-finisher

Not informed

32.23%

20.2%

15.1%

5.65%

1.49%

25.33%

Water sources

Pond

Natural water fountain

Public source

Lake

Water cistern

Not informed

42.8%

22.2%

9.9%

1.5%

0.3%

23.3%

Feed source

From production system

Own feed mill 

Not informed

68.7%

7.8%

23.5%

Destination of dead animals

Compost

Incinerator

Bury 

Septic pit

Not informed

76.0%

0.23%

0.23%

0.24%

23.3%

Manure destination

Lagoon

Septic pit

28.9%

2.48%A
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Not informed 68.62%

Barn infrastructure 

Concrete or bricks

Wood

Mixed of wood and concrete

Not informed

51.9%

1.29%

23.4%

23.5%

*This measures the level of vulnerability the introduction of pathogen into certified-swine-breeder-

farms, briefly is a combination of risks measurements form distance to farms to presence of 

biosecurity and infrastructure of the farm.
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Figure Legend

Figure 1. Geographical location of farm density by type of pig operation, commercial, independent, 

and not reported.

Figure 2. Description of pig movements between all farms types from January 2017 to December 

2018. The arrows size shows the percentage of movements and the color is given by the origin of the 

movements. The size of the circles represented the total number of farms. * CSBF stands for Certified 

Swine Breeding Farm (in Portuguese Granja de Reprodutores Suínos Certificada, GRSC)

Figure 3. Description of the monthly variation of the network metrics of the pig movements from 

January 2017 until December 2018.

Figure 4. Simulated disease spread dynamics within the swine contact network. Simulations assumed 

two seed infection scenarios a) random, where 950 pig farms (10% prevalence) were infected at day 

“0”, and b) stratified, in which the proportion of the 950 pig farms (10% prevalence) was equally 

distributed by commercial, independent, and not reported farms operation types. The simulations 

assumed within farm prevalence of 0.1%.

Figure 5. The two years spread cascades sizes for each target-network surveillance strategy. In light 

blue, the estimated spread cascade, which had a maximum value of 29 farms while not targeting 

farms, resulted in a cascade of 2,624 farms (black). 
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